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2 LPS, Faculté des Sciences Dhar Mehraz, BP 1796, Fès, Morocco

Received 20 April 2007, in final form 30 May 2007
Published 24 July 2007
Online at stacks.iop.org/JPhysCM/19/346215

Abstract
An accurate calculation of the exciton–phonon interaction matrix elements
and Huang–Rhys parameter for nearly spherical nanocrystals (NCs) of polar
semiconductor materials is presented. The theoretical approach is based on
a continuum lattice dynamics model and the effective mass approximation
for electronic states in the NCs. A strong confinement regime is considered
for both excitons and optical phonons, taking into account both the Fröhlich-
type and optical deformation potential (ODP) mechanisms of the exciton–
phonon interaction. The effects of exchange electron–hole interaction and
possible hexagonal crystal structure of the underlying material are also taken
into account. The theory is applied to CdSe and InP quantum dots. It is shown
that the ODP mechanism, almost unimportant for CdSe, dominates the exciton–
phonon coupling in small InP dots. The effect of the non-diagonal interaction,
not included in the Huang–Rhys parameter, is briefly discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last decade, intensive efforts have been devoted to studies of quasi-zero-
dimensional semiconductor nanocrystals (NCs) possessing the properties of quantum dots
(QDs). Technological improvements have been accompanied by theoretical work aiming at
elucidating the QDs’ properties. The electronic and optical properties of QDs are strongly
influenced by optical phonons. In particular, the interaction of electrons and holes with optical
phonons is important for steady-state and time-resolved optical absorption and emission spectra
and inelastic light scattering by QDs. In recent years, it has become clear that the electron–
phonon interaction in QDs leads to the formation of a polaron and cannot be described within
the Born approximation [1–3]. A quantitative study of this interaction is crucial for achieving a
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detailed understanding of the polaron properties in systems with discrete electron and exciton
spectra. Therefore, it is important to use appropriate models for all polaron ingredients,
i.e. electrons, holes and phonons.

There exists a broad literature devoted to the electronic structure of the most studied II–VI,
III–V and elemental NCs (see e.g. [4]). Theoretical models that have been successfully applied
to describe the electron and hole spectra of nearly spherical QDs range from the effective mass
approximation (EMA) [5–7] to large scale ab initio calculations [8, 9]. There is a consensus
that, if the complex valence band structure of the underlying material and the electron–hole
exchange interaction are taken into account, the (semi-)analytical EMA calculations reproduce
reasonably well the energy spectra and optical properties of confined excitons unless the QDs
are too small (below 1 nm in radius).

The spatial confinement effect on optical phonons in semiconductor QDs has also been
studied experimentally and theoretically (see [10] for a review). Again, continuum models
provide a good understanding of experimental results obtained by means of Raman and
far-infrared (FIR) spectroscopies [11, 12]. However, the intensity of the exciton–phonon
interaction in QDs remains a controversial subject. Various theoretical studies led to different
conclusions concerning the strength of the exciton–phonon interaction and its dependence on
the QD size [13–16]. Klein et al [13] considered a donor-like exciton model (with a hole located
at the centre of the dot) and the dielectric continuum model for phonons in a spherical QD. It
was found that the Huang–Rhys parameter (HRP), a measure of the diagonal (or intra-level)
exciton–phonon coupling, does not depend on the QD radius (R). On the other hand, Marini
et al [14], who used a variational approach to determine the exciton ground-state wavefunction
and a similar model for phonons, concluded that the HRP decreases with the increase of QD
size in the strong confinement regime and changes little when R becomes larger then the
exciton Bohr radius, aex. In contrast, calculations presented in [15, 16] predicted a strong size
dependence of the exciton–phonon coupling strength in a spherical QD in the weak confinement
regime.

From the experimental viewpoint, the exciton–phonon coupling strength was extracted
from studies of Raman scattering by CuBr and CuCl QDs [17]. It was reported that the HRP
increases monotonically with the decrease of the dot radius, for example, from 0.22 to 0.7
for CuCl QDs when R decreased from 3 to 1.6 nm. Scamarcio et al [18] studied the size
dependence of resonant Raman scattering by CdSx Se1−x NCs embedded in a glass slab and
reported an increase in the Fröhlich electron–phonon interaction strength with decreasing NC
size within the strong confinement regime. Jungnickel et al [19] studied the luminescence from
CdSe NCs in the situation of strong electron and hole confinement. They found that the HRP
increases when the QD size is reduced, reaching a very high value of the order of unity for
CdSe NCs with R/aex ≈ 0.3 [19].

This controversy, leading to the situation in which the exciton–phonon coupling constants
are often treated as fitting parameters [3, 20], motivated the present work. We calculate
the size dependence of the diagonal interaction between the ground-state exciton and optical
phonons in a spherical QD by properly taking into account the confinement effect on the
electron, hole and phonons, and including both the Fröhlich-type and optical deformation
potential (ODP) mechanisms. The effects of phonon confinement and the dispersion of phonons
with both electrostatic and mechanical boundary conditions have been considered in previous
works [12, 21, 22] resulting in a good agreement with experimental data on Raman scattering
in NCs of highly ionic materials such as CdSe. However, to the best of our knowledge, this
is the first calculation of the ODP matrix elements for spherical QDs. The contribution of this
mechanism is shown to be even more important than the Fröhlich-type one in the case of small
InP dots. The effects of the electron–hole exchange interaction and hexagonal structure of the
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underlying material on the HRP are also considered, leading to a reduction of its value for some
states.

2. Exciton–phonon interaction Hamiltonian

In all semiconductors, excitons4 interact with optical phonons by means of the deformation
potential mechanism. In bulk semiconductors with cubic structure, for long-wavelength optical
phonons, the ODP interaction vanishes by symmetry for any non-degenerate band (e.g. the �2

conduction band in Ge or the �6 conduction band in materials with zinc blende structure) [23]
but it is non-zero for holes near the top of the valence band. The short-range ODP interaction
is proportional to the relative displacement of two atoms in the same unit cell, with the
corresponding operator given by [24]

Ĥ ′
exL =

√
3d0

2a0

∑

ν

�D · �uν(�r), (1)

where a0 is the lattice constant and d0 is the ODP constant for the �v15 valence band [23] and �uν
is the relative displacement of two ions in the same unit cell for a phonon mode ν. Considering
only the light and heavy hole sub-bands (�8), the vector �D in equation (1) is constituted by
numerical 4 × 4 matrices, (Dx , Dy, Dz), with columns and rows corresponding to the Bloch
states with different angular momentum projection Jz = ±1/2,±3/2. The explicit form of
these matrices can be found, for example, in [25].

In addition to Ĥ ′
exL, the long-range electrostatic field associated with the optical vibrations

in polar materials introduces a stronger coupling mechanism, the Fröhlich interaction. This
interaction is described by the operator

Ĥ ′′
exL = e

∑

ν

[
ϕν(�rh)− ϕν(�re)

]
, (2)

where �re(�rh) is the electron (hole) radius-vector and ϕν is the electrostatic potential associated
with a confined phonon mode ν.

Considering a spherical QD (of radius R) made of a material with isotropic phonon
dispersion curves, confined phonon modes (which, in general, are mixed of longitudinal,
transverse, and surface components) can be characterized by three ‘spherical’ quantum
numbers, ν = {l p,m p, n p}. Using the formalism described in [11, 26, 27] for the case of
perfect phonon confinement, the spherical components of the displacement vector are given by

ur
lp m p n p

(�r) =
(

h̄

2ρωlp n p

)1/2

Alp n pvlp n p(r) Ylp m p (ϑ, φ),

uϑlp m p n p
(�r) =

(
h̄

2ρωlp n p

)1/2

Alp n pwlp n p(r)
∂

∂ϑ
Ylp m p (ϑ, φ), (3)

uφlp m p n p
(�r) =

(
h̄

2ρωlp n p

)1/2

Alp n pwlp n p(r)
1

sinϑ

∂

∂φ
Ylp m p (ϑ, φ),

where ρ is the reduced mass density, ωlp n p denotes the eigenmode frequencies that are
independent of m p and determined by a secular equation that can be found in [10, 11, 26]:

vlp n p(r) = qlp n p R j ′
lp
(qlpn pr)+ ζlpn p l p(r/R)lp−1 + ηlp n p l p(l p + 1)R

r
glp (klp n pr),

wlp n p(r) = R

r

{
jlp(qlpn pr)+ ζlp n p(r/R)lp + ηlp n p

[
glp(klp n pr)+ klp n prg′

lp
(klpn pr)

]}
,

4 By exciton we understand an electron–hole pair, independently of the confinement regime considered.
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ζlp n p = {qlp n p R j ′
lp
(qlp n p R)[glp(klp n p R)+ klpn p Rg′

lp
(klpn p R)

− l p(l p + 1) jlp(qlpn p R)glp (klp n p R)]}
× {l p[l pglp(klp n p R)− klpn p Rg′

lp
(klpn p R)]}−1,

ηlp n p = l p jlp(qlp n p R)− qlp n p R j ′
lp
(qlp n p R)

l p[l pglp (klpn p R)− klp n p R g′
lp
(klpn p R)] ,

qlp n p =
√
(ω2

LO − ω2
lp n p
)/βL; klp n p =

√
|(ω2

TO − ω2
lp n p
)βT |,

Ylp m p(ϑ, φ) is spherical harmonic, jlp(x) a spherical Bessel function, glp(x) is equal to either
jlp(x) or i−lp jlp(i x), depending on the sign of (ω2

TO − ω2
lp n p
)/βT ; ωLO, βL and ωTO, βT are

the bulk longitudinal optical (LO) and transverse optical (TO) phonon frequencies and bending
parameters, respectively, and the normalization constant is determined by

Alp n p =
{∫ R

0
[v2

lp n p
(r)+ l p(l p + 1)w2

lp n p
(r)] r 2 dr

}−1/2

.

The electrostatic potential is given by [27]

ϕlp m p n p(�r) = CF

e

lp n p(r)Ylp m p (ϑ, φ), (4)

where CF = e
√

2π h̄ωLO(ε
−1∞ − ε−1

0 )/R is the Fröhlich constant, with ε∞ and ε0 being
the high-frequency and static dielectric constants of the QD material, respectively. The
dimensionless function 
 in equation (4) is


lp n p(r) = Alp n p

[
jlp(qlp n pr)+ γlp n pζlpn p(r/R)lp

]
,

where γlpn p = (ω2
lp n p

− ω2
TO)/(ω

2
LO − ω2

TO). Note that the above expressions are valid for
l p > 0. Expressions for l p = 0 can be found, for example, in [10, 22, 28].

3. Exciton ground state and matrix elements

Within the EMA, a relatively simple description of electron–hole pair states confined in a
spherical QD is possible in the limiting case of strong exciton confinement (R � aex). In
the first approximation, the exciton wavefunction can be factorized:

�ex(�re, �rh) = �h(�rh)�e(�re). (5)

The lowest-energy state for electrons belonging to the �6 conduction band is two-fold
degenerate due to the spin projection sz = ±1/2, with the wavefunctions given by �sz

e (�r) =
ψ0(�r)δsz ,σ |σ 〉, where |σ 〉 is the Bloch function of the �6 band, labelled by σ = ↑,↓. The
envelope function can be found in many books and papers (e.g. [4–6]):

ψ0(�r) = θ(R − r)

√
2π2

R3
j0(πr/R)Y00(ϑ, φ), (6)

where θ(R − r) is the Heaviside function. For the four-fold degenerate hole ground state5 with
total angular momentum Fh = 3/2, usually denoted by 1S3/2, the wavefunctions are written
as [5, 6]

�M
h (�r) = 2

∑

l=0,2

Rl(r)(−1)M− 3
2

∑

μ+m=M

(
3/2 l 3/2
μ m −M

)
Ylm(ϑ, φ)|μ〉, (7)

5 We consider the case of large spin–orbit interaction neglecting the �7 band.
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where M = ±1/2,±3/2, |μ〉 are the Bloch functions of the �8 band (μ = ±1/2,±3/2) and
( · · ·
· · ·

)
are the Wigner 3- j symbols. The radial envelope functions are given by

R0(r) = θ(R − r)
C

R3/2

[
j0(Khr)− j0(Kh R)

j0(
√
βKh R)

j0(
√
βKhr)

]
,

R2(r) = θ(R − r)
C

R3/2

[
j2(Khr)+ j0(Kh R)

j0(
√
βKh R)

j2(
√
βKhr)

]
,

(8)

where C is a normalization constant, β = m lh/mhh is the ratio of the light and heavy
hole masses, and Kh = χ1/R with χ1 denoting the first root of a certain characteristic
equation [5, 6].

Calculation of the matrix elements of the Fröhlich-type part of the exciton–phonon
interaction Hamiltonian (2) using expressions (4)–(8) is straightforward. They are non-zero
only for phonons with l p = 0, 2. The result is expressed in terms of two integrals,

J0n p = CF√
4π

∫ R

0
[R2

0(r)+ R2
2(r)− ψ2

0 (r)]
0n p(r)r
2 dr (9)

and

J2n p = CF√
5π

∫ R

0
R0(r)R2(r)
2n p(r)r

2 dr . (10)

All the diagonal matrix elements are equal to J0n p for l p = 0, while for l p = 2,m p = 0 they
are equal to ±J2n p , depending on the sign of M .

Calculation of the ODP matrix elements is more tedious and, to the best of our knowledge,
has not been performed before. We express the scalar product in (1) in terms of spherical
components of the displacement,
�D · �ulp m pn p = (Dx sinϑ cosφ + Dy sinϑ sinφ + Dz cosϑ)ur

lp m pn p

+ (Dx cosϑ cosφ + Dy cosϑ sinφ − Dz sinϑ)uϑlp m pn p

+ (−Dx sinφ + Dy cosφ)uφlp m pn p
,

and expand the three terms in series of spherical harmonics,

�D · �ulp m pn p = �D ·
∑

L ,M

( �Alp m pn p

LM + �Blp m pn p

LM + �Clp m pn p

LM )YLM(θ, φ), (11)

with �Alpm p n p

LM = (a
lp m pn p;x
LM ; a

lpm pn p;y
LM ; a

lpm p n p;z
LM ) and similarly for �Blp m pn p

LM and �Clp m pn p

LM . For
example,

a
lp m pn p;x
LM =

(
h̄

2ρωlp n p

)1/2

Alp n pvlp n p(r) ·
∫

cosϑY ∗
LM(θ, φ)Ylp m p (θ, φ) d�.

After finding the expansion coefficients in (11), we can calculate the ODP matrix elements,
which are non-zero only for phonons with l p = 1, 3. Note that only holes are involved in
this interaction. For l p = 1,m p = 0, the diagonal matrix elements are equal to C1n p I −

10n p
for

M = ±3/2 and to C1n p I +
10n p

for M = ±1/2, with

I ±
10n p

= 2d0

5
√

3π

∫ R

0

(
R0(r)R2(r)± 1

7
R2

2(r)

) [
vlp n p(r)−wlp n p(r)

]
r 2 dr . (12)

For phonons with l p = 3, the non-zero contributions arise from the modes with m p = 0 and
from those with m p = ±2. In the former case, the diagonal matrix elements are equal to
C3n p I −

30n p
for M = ±3/2 and to C3n p I +

30n p
for M = ±1/2, with

I ±
30n p

= 2d0

5
√

7π

∫ R

0

(
R0(r)R2(r)± 1

7
R2

2(r)

) [
vlp n p(r)+ 4wlp n p(r)

]
r 2 dr . (13)

5
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In the latter case, they are equal to i m p

|m p | C3n p I +
32n p

for M = ±3/2 and to i m p

|m p | C3n p I −
32n p

for
M = ±1/2, where

I ±
32n p

= d0√
210π

∫ R

0

(
R0(r)R2(r)± 2

7
R2

2(r)

) [
vlp n p(r)+ 4wlp n p(r)

]
r 2 dr . (14)

The dimensionless constants Clp n p in the above expressions are given by

Clp n p =
√

3

2a0

(
h̄

2ρωlp n p

)1/2

Alp n p , (15)

with corresponding l p and n p.

4. Effects of exchange interaction and hexagonal crystal structure

As is known, the eight-fold degenerate exciton state 1se1S3/2 is split by the electron–hole
exchange interaction and, additionally, by the crystal field if the underlying QD material has
hexagonal structure. These effects were considered in detail in [5, 6]. The result is that there are
five energy levels corresponding to the exciton states with different total angular momentum,
denoted 0U, 0L, ±1U, ±1L and ±2. The energies of these states and the corresponding
wavefunctions are determined by two parameters,

η = εexcha3
0

3πR

∫ R

0
sin2

(πr

R

)(
R2

0(r)+ 1

5
R2

2(r)

)
dr (16)

and

� = �cr

∫ R

0

(
R2

0(r)− 3
5 R2

2(r)
)

r 2 dr , (17)

where εexch and �cr are the exchange interaction and crystal-field constants of the
corresponding bulk material.

We can obtain the exciton–phonon interaction parameters for the 0U, 0L, ±1U, ±1L and
±2 states from those calculated in the previous section by using the transformation matrix that
relates these two bases. This matrix, with elements entirely determined by the parameters (16)
and (17), has been presented in [22]. The result of the calculation is most conveniently
presented in matrix form, with the lines and rows corresponding to the states 0U, 0L, +1U,
+1L, −1U, −1L, +2, and −2 (in this order):

B(lp,0,n p) = Clp n p

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I +
lp 0n p

0 0 0 0 0 0 0

0 I +
lp 0n p

0 0 0 0 0 0

0 0 Ĩ −
lp 0n p

cIlp 0n p 0 0 0 0

0 0 cIlp 0n p Ĩ +
lp 0n p

0 0 0 0

0 0 0 0 Ĩ −
lp 0n p

−cIlp 0n p 0 0

0 0 0 0 −cIlp 0n p Ĩ +
lp 0n p

0 0

0 0 0 0 0 0 I −
lp 0n p

0

0 0 0 0 0 0 0 I −
lp 0n p

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

6
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for the phonons with l p = 1, 3 and m p = 0, and

B(3,±2,n p) = C3n p

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±iI −
32n p

0 0 0 0 0 0 0

0 ±iI −
32n p

0 0 0 0 0 0

0 0 ±i Ĩ +
32n p

±icI32n p 0 0 0 0

0 0 ±icI32n p ±i Ĩ −
32n p

0 0 0 0

0 0 0 0 ±i Ĩ +
32n p

∓icI32n p 0 0

0 0 0 0 ∓icI32n p ±i Ĩ −
32n p

0 0

0 0 0 0 0 0 ±iI +
32n p

0

0 0 0 0 0 0 0 ±iI +
32n p

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

for the phonons with l p = 3 and m p = ±2. In the expressions (18) and (19), Clp n p is given by
equation (15):

Ĩ ±
lp m pn p

= (I +
lp m pn p

+ I −
lp m pn p

)/2 ± b(I +
lpm p n p

− I −
lp m pn p

)/2,

Ilp m pn p = (I +
lp m pn p

− I −
lp m pn p

)/2,

with I ±
lp m pn p

given by equations (12)–(14):

b = 2η −�√
16η2 +�2 − 4η�

,

and

c = 2
√

3η√
16η2 +�2 − 4η�

.

For the sake of completeness, we reproduce here the exciton–phonon interaction matrix for the
phonons with l p = 2 and m p = 0 (Fröhlich-type mechanism) [22]:

B(2,0,n p) = J2n p

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −b c 0 0 0 0
0 0 c b 0 0 0 0
0 0 0 0 −b −c 0 0
0 0 0 0 −c b 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

For the l p = 0 phonons, the matrix remains diagonal with all non-zero elements equal to
J0n p .

5. Calculated results for the HRP

First, we would like to recall that the Huang–Rhys parameter (HRP), S, is a dimensionless
measure of the exciton–optical-phonon interaction. It can be defined with rigour in the
framework of the so-called independent boson model (IBM) [29, 30] describing the coupling of
a single non-degenerate exciton level to a gas of phonons at equilibrium. The picture changes
when the exciton state is degenerate or there are several states separated by energies that are
small compared to h̄ωLO. Various definitions of the HRP have been proposed but none of them
is completely satisfactory [31], since the adiabatic approximation becomes insufficient [21].

7
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Considering the HRP as a simple measure of the exciton–phonon interaction we define it for
each sub-state (sz,M) constituting the 1se1S3/2 QD exciton octet, in the same way as for a
non-degenerate state [30, 31]:

Ssz ,M = (h̄ωLO)
−2

∑

lp ,m p ,n p

∣∣〈�sz ,M
ex

∣∣Hex−ph

∣∣�sz,M
ex 〉∣∣2

. (21)

If the (sz,M) states were non-degenerate, this parameter would determine the downward shift
of their energy (the so-called polaron correction),

�Esz ,M =
∑

lp ,m p ,n p

|〈�sz ,M
ex |Hex−ph|�sz,M

ex 〉|2
h̄ωlp m pn p

≈ Ssz ,M h̄ωLO, (22)

and also the relative intensity of the equidistant satellites of the main peak in the absorption and
emission spectra if one takes ωlp m pn p ≈ ωLO for all phonon modes. In the real situation, the true
polaron correction depends on both diagonal and non-diagonal matrix elements of the exciton–
phonon interaction Hamiltonian. Nevertheless, we shall use the HRP defined by equation (21)
as a meaningful single quantity characterizing the exciton–lattice coupling and allowing for the
comparison of the relative importance of the two mechanisms considered in this work.

Let us first neglect the effects of exchange interaction and hexagonal crystal field. It turns
out that, if only the Fröhlich-type interaction is taken into account, S is exactly the same for
all eight states, within the approximation considered. The ODP interaction introduces some
difference between the states with M = ±3/2 and ±1/2. According to the HRP definition (21)
and results presented in section 3,

Ssz ,M = (h̄ωLO)
−2

∑

n p

{
J 2

0n p
+ J 2

2n p
+ (C1n p I ±

10n p
)2 + (C3n p I ±

30n p
)2 + 2(C3n p I ∓

32n p
)2

}
, (23)

where the upper and lower sign applies to the states with M = ±1/2 and ±3/2, respectively.
The radial dependence of the HRP calculated according to equation (23) is presented in
figures 1 and 2 for CdSe and InP QDs, respectively. The material parameters used in the
calculations are listed in table 1. As can be seen from figure 1, the difference between these
two groups of states is fairly small in the case of CdSe dots where the Fröhlich-type interaction
is dominant and the ODP contribution to the HRP does not exceed 10% (consequently, S scales
approximately as R−1).

The case of InP QDs is different. This material is characterized by a lower degree of
ionicity and a larger ODP interaction constant. As a result, the ODP and Fröhlich-type
mechanisms produce comparable contributions to the HRP and the difference between the
exciton states involving M = ±1/2 and ±3/2 holes becomes significant (see figure 2). There
is no simple scaling law for S versus R in this case.

With the effects considered in section 4 taken into account, expression (23) holds for the
states 0U and 0L (with the upper sign), and ±2 (with the lower sign), as can be seen from
equations (18)–(20). At the same time, the HRP value for the remaining states is given by a
different expression, namely,

S±1U,L = (h̄ωLO)
−2

∑

n p

{
J 2

0n p
+ b2 J 2

2n p
+ (C1n p Ĩ ±

10n p
)2 + (C3n p Ĩ ±

30n p
)2 + 2(C3n p Ĩ ∓

32n p
)2

}
.

(24)

In equation (24), the upper (lower) sign applies to the ±1L (±1U) states. The values of
S±1U,L versus QD radius are also presented in figures 1 and 2.

Among the material parameters used in these calculations, the ratio of the light and heavy
hole masses (β) is probably less well known. Meanwhile, the values of the exciton–phonon
interaction parameters depend strongly on β . Figures 3 and 4 show the HRP variation with β
for CdSe and InP QDs with R = 2 nm.
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Figure 1. HRP calculated for CdSe QDs of different radii, with and without exchange interaction
and crystal-field effects. In the latter case, ± corresponds to the M = ±1/2 and ±3/2 states,
respectively. Also shown is the contribution of the Fröhlich-type mechanism. The curves labelled
1U,L represent the exchange interaction and crystal-field effects that affect only these four states.
β = 0.16 was used in these calculations.

Table 1. Material parameters used in the calculations.

Parameters CdSe InP

me/m0 0.13 0.08
mlh/m0 0.26 0.09
ε0 9.7 12.5
ε∞ 6.2 9.7
�cr (meV) 25 0
εexcha3

0 (meV nm3) 36 36
ωLO (cm−1) 211 348
ωTO (cm−1) 169 307
d0 (eV) 8.9 35.6
a0 (A) 6.05 5.87
βLO (cm−1 A2) 70.55 29.43
βTO (cm−1 A2) −35.08 −15.6

6. Discussion and conclusion

We have calculated the Huang–Rhys parameter for the ground-state exciton strongly confined in
a spherical QD using a self-consistent approach and taking into account both the Fröhlich-type
and ODP mechanisms. We did not use any simplified (e.g. donor-like) model for the exciton
as was the case of some previous calculations. Our treatment includes the light/heavy hole
mixing, which is the major source of the electron and hole charge separation in a QD embedded
in a dielectric matrix, thus contributing to the enhanced net exciton–phonon interaction via the
Fröhlich-type mechanism. For the first time, the ODP contribution has been incorporated. The
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Figure 2. The same as in figure 1 but for InP QDs. Additionally, the ODP mechanism contribution
is shown explicitly (calculated without exchange interaction effect). β = 0.16.

Figure 3. The same quantities as in figure 1 plotted against the light/heavy hole mass ratio. CdSe
QD radius 2 nm.

results show that, for CdSe dots, the HRP can hardly exceed a moderate value of S ≈ 0.05,
within the limits of validity of the effective mass theory for electrons and holes, and continuous
lattice dynamics model for phonons. This is at least an order of magnitude smaller than the
so-called experimental values, usually derived from the ratio of the measured intensities of the
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Figure 4. The same quantities as in figure 2 plotted against the light/heavy hole mass ratio. InP QD
radius 2 nm.

phonon satellites in the QD emission spectra [19, 32, 33]. We believe that the present theory
provides correct values of the exciton–phonon interaction parameters in spherical QDs. The
apparent discrepancy with experiment is due to the fact that the adiabatic IBM is insufficient to
describe the exciton–polaron spectra of QDs. This was first pointed out by the authors of [34],
who noticed that, in some cases (e.g. [33]), no HRP value can allow one to fit the experimental
spectra with the theory based on the adiabatic IBM [29, 30]. As a result of the phonon-induced
mixing of exciton states, the energy spectrum of the QD can be drastically changed. Examples
of this effect on the absorption, emission and Raman spectra of QDs can be found in [3, 21, 22].

However, in spite of the limited applicability of the adiabatic approximation, the HRP is
still a meaningful parameter that mainly determines the polaron shift of the zero-phonon line
according to equation (22). In spherical QDs, phonon-mediated coupling between different
exciton states is expected to be weaker then the diagonal one because phonons with l p = 0 do
not contribute to the former6. Consequently, the fine structure of the spectra, originating from
the phonon-induced mixing of different exciton states, may not be resolved in spectroscopic
experiments even when a small number of QDs is probed [35] and the polaron shift (22) is
supposed to be the major effect. The presented theory predicts different polaron shifts for
different optically active states of the 1se1S3/2 octet. The difference can reach as much as
0.005h̄ωLO (approximately corresponding to 1 cm−1) for both CdSe and InP QDs. It should
contribute to the homogeneous broadening of the emission line, decreasingly as the QD size
increases.

In conclusion, we have performed calculations of the Huang–Rhys parameter for a
spherical QD made of a polar semiconductor material and have presented illustrative results
for CdSe and InP dots. The relevant exciton–phonon interaction matrix elements are non-zero

6 As mentioned at the end of section 4, the interaction matrix for such modes is diagonal and reduces to a single
coupling constant. Although its value is reduced because of the partial compensation of the electron and hole clouds in
the QD, it is still quite considerable, compared to the other phonon modes.
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for phonon modes with l p = 0, 2 (Fröhlich-type mechanism) and l p = 1, 3 (ODP mechanism).
The results calculated for InP and CdSe are shown to be quite sensitive to the ratio of light and
heavy hole masses. As the confinement becomes stronger, the HRP value increases rapidly,
although, in general, there is no simple scaling law for it with the QD size. For CdSe, the
Fröhlich-type mechanism is by far more important than the ODP. For InP, both mechanisms are
important and, for R � 2 nm, the largest contribution comes from the l p = 3 modes. We also
considered the effect of the hexagonal crystal structure (for CdSe) and exchange interaction
on the HRP and found that its value is different for ±1U,L, 0U,L and ±2 exciton states. This
implies different polaron shifts for these groups of states.
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